A Look at Computer Architecture Methodologies

Mario Badr and Natalie Enright Jerger
Why evaluation methodologies?

1. Is computer architecture an art or a science?
 - Experimental Data
 - Reproducibility

2. How have evaluated metrics changed over the years?
Scope of the Survey

• 44 ISCA Proceedings
 • 1973-2017
 • Too many papers (over 1600)

• Select papers from each proceeding across topics
 • Bias selection to impactful papers
 • 4-7 papers per proceeding
 • 222 papers total
Paper Topics

<table>
<thead>
<tr>
<th>Axis #1</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Core</td>
<td>A conventional general purpose processor with one core</td>
</tr>
<tr>
<td>Multiple Core</td>
<td>More than one conventional processor</td>
</tr>
<tr>
<td>Specialized Architecture</td>
<td>An unconventional processor (e.g., accelerator, GPU)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Axis #2</th>
<th>Description or Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microarchitecture</td>
<td>e.g., branch prediction, simultaneous multithreading</td>
</tr>
<tr>
<td>Memory</td>
<td>e.g., cache replacement, phase change memory, cache coherence, memory consistency</td>
</tr>
<tr>
<td>Networks</td>
<td>e.g., bus, crossbar, network-on-chip, network interface</td>
</tr>
<tr>
<td>Organization</td>
<td>The overall design of multiple components</td>
</tr>
<tr>
<td>Coordination</td>
<td>The management of multiple components to achieve a goal</td>
</tr>
</tbody>
</table>
Surveyed Papers Along Both Axes

![Bar chart showing paper counts for different topics under different architectures:]

- **Specialized Architecture**
 - Memory: 10
 - Microarchitecture: 20
 - Networks: 30
 - Organization: 40
 - Coordination: 10

- **Single Core**
 - Memory: 20
 - Microarchitecture: 40
 - Networks: 10
 - Organization: 20
 - Coordination: 10

- **Multiple Cores**
 - Memory: 60
 - Microarchitecture: 20
 - Networks: 40
 - Organization: 60
 - Coordination: 20

Paper Count
Types of Evaluations

• None

• Qualitative

• Theoretical

• Quantitative
 • Experimental data
We Focus on Quantitative Evaluations

• None

• Qualitative

• Theoretical

• Quantitative
 • Experimental data

• Analytical Model

• Prototype

• Simulation
 • Architectural
 • Circuit-level
 • Other
The 1970s – 27 papers

• Quantitative Evaluations: 40%

• Evaluated Metrics
 • Performance
 • Proxies for area

• Analytical Models
 • e.g., assume ideal parallelism
 • e.g., performance projections
The 1980s – 46 papers

- Quantitative Evaluations: 60%
- Reduced costs of memory and CPU
 - Single core processors
 - Prototyping
- Trace-driven simulation
The 1990s – 47 papers

• Quantitative Evaluations: 85%

• Introduction of many simulators
 • SimpleScalar

• Introduction of CACTI
 • Catches on in the next decade

• Power/energy is considered
A Brief Interlude: Evaluated Metrics

1973 – 1995

1996 – 2017
The 2000s – 50 papers

• Quantitative Evaluations: 98%

• Models for power, energy, thermal
 • Wattch, HotSpot, Orion, McPAT
 • CACTI gains popularity

• More simulator options
 • Pin, Simics

• Tools to reduce simulation time
 • SimPoint, PinPoint, SMARTS
The 2010s – 52 papers

• Models and prototypes used more

• More tools
 • Raised levels of abstraction
 • Design space exploration
Summarizing Tool Use – 1973 - 2017

- Analytical Model
- Architectural Simulation
- Prototyping
Computer Architecture: Art or Science?

• Strong push to quantitative evaluations

• Designs are evaluated with more metrics

• Many tools developed to generate data

• Reproducibility?
The Increasingly Complex “Methodology”

• Methodology section prominent in mid-to-late 90s

• Methodologies grow very complex
 • More tools are used

• Page real estate
 • Less used for methodology
 • More used for experimental data

• Methodologies do not provide enough information
Conclusion: Towards a Scientific Method

Architects
• Better methodology section
• Relevant experimental data
• Release your evaluation
 • Docker
 • GitHub
 • Other technologies

Tools Developers
• Caution against limitations
• Output ‘artifacts’ that
 • Can be redistributed
 • Can be re-used as inputs
 • Can be analyzed
Our Data is Open Source

https://github.com/mariobadr/survey-wp3

License: Apache 2.0

Mario Badr and Natalie Enright Jerger